

Data assimilation of CrIS and TROPOMI satellite CO concentrations and its potential for constraining global OH

Master's Student: Nadine de Bruyn
Supervisor: Dr. Thomas Walker

Additional Co-Authors: Helen M. Worden, Dejian Fu, Merritt N. Deeter, James R. Drummond,

Nadia Smith, Christopher Barnet

Research Overview

Purpose:

- Use global tropospheric CO concentrations to inversely calculate the global mean OH concentration
- Why use CO?
 - Primary sink is OH
 - Global measurements improving
 - Not assessed as trace gas for OH

Expectation:

 Higher resolution satellite CO measurements can yield higher resolution OH

Scope / Limitations:

- May-Aug 2016 / 2019
- Data gaps
- Instrument bias, error, time and spatial resolutions
- Modeling bias, error, omissions, assumptions

Data Collection & Instrumentation

- Satellite retrievals
 - MOPITT (Measurement of Pollution in the Troposphere)
 - CrlS (Cross-Track Infrared Sounder) CLIMCAPS
 - TROPOMI (Total Carbon Column Observing Network)
- Ground-up retrievals
 - NDACC (Network for the Detection of Atmospheric Composition Change)
- Chemical Transport Models (CTM)
 - GEOS-Chem
 - GEOS-Chem Adjoint

Methods

Part 1: CO Analysis

- Cross compare satellite CO retrievals
- Compare with ground-up data
- Compare with GEOS-Chem model

Part 2: OH Output

- Determine OH after CO observation assimilation into GEOS-Chem Adjoint
- Compare instrument differences

Part 3: Sensitivities

- GEOS-Chem adjoint to determine CO sensitivities to OH reaction
- Understand instrument measurements/ characteristics

Initial Results

Part 1: CO Analysis

(example: cross-comparison over Toronto NDACC station)

Part 2: OH Output

(example: OH total column after MOPITT CO assimilation)

Part 3: Sensitivities

(example: CH₄+OH reaction sensitivity)

Conclusions

- Part 1: CO Analysis
 - TROPOMI total column accuracy is promising
 - CLIMCAPS profile accuracy is expected to be high
- Part 2: OH Outputs
 - Ongoing
 - Compare OH resolutions between assimilated observing platforms
- Part 3: Sensitivities
 - Ongoing
 - Reveal model and instrument characteristics

- Possible future investigation:
 - Assess Joint CrIS-TROPOMI product
 - Compare whole year(s) data, monthly/annual trends, interannual variations

Goal:

 Should provide insight into OH reaction rates with CO, and whether CO could be used to estimate OH